quaternions.md
��#� �Q�u�a�t�e�r�n�i�o�n�s� �a�n�d� �R�o�t�a�t�i�o�n� �C�h�e�a�t� �S�h�e�e�t� � � � �Q�u�a�t�e�r�n�i�o�n�s� �a�r�e� �p�o�i�n�t�s� �o�n� �t�h�e� � �4�D� �u�n�i�t� �h�y�p�e�r�s�p�h�e�r�e�.��� �F�o�u�r�-�d�i�m�e�n�s�i�o�n�a�l� �c�o�m�p�l�e�x� �n�u�m�b�e�r�s� �a�r�e� �a�l�w�a�y�s� �o�f� �t�h�e� �f�o�r�m�:� � � � �#�#� �a� �+� �b� ��i�� �+� �c� ��j�� �+� �d� ��k�� � � � �& w�i�t�h� �o�n�e� �r�e�a�l� �p�a�r�t� � a� ,� �a�n�d� �3� � ���i�m�a�g�i�n�a�r�y��� �o�r� ���v�e�c�t�o�r��� �p�a�r�t�s� � b� ,� � c� ,� �a�n�d� � d� .��� �S�i�n�c�e� �a�l�l� �q�u�a�t�e�r�n�i�o�n�s� �f�a�l�l� �o�n� �t�h�e� �u�n�i�t� �h�y�p�e�r�s�p�h�e�r�e�,� �i�t� �w�i�l�l� �a�l�w�a�y�s� �h�a�v�e� �a� �d�i�s�t�a�n�c�e� �1� �f�r�o�m� �t�h�e� �o�r�i�g�i�n�.� �T�h�e�y� �t�h�e�r�e�f�o�r�e� �m�a�i�n�t�a�i�n� �t�h�e� �f�o�l�l�o�w�i�n�g� �r�e�l�a�t�i�o�n�s�h�i�p�:� � � � �#�#� �a�^�2� �+� �b�^�2� �+� �c�^�2� �+� �d�^�2� �=� �1� � � � �I�f� �X� �a�n�d� �Y� �a�r�e� �t�w�o� �q�u�a�t�e�r�n�i�o�n�s� �t�h�a�t� �s�a�t�i�s�f�y� �t�h�e� �a�b�o�v�e� �r�u�l�e�,� �X�Y� �w�i�l�l� �a�l�s�o� �s�a�t�i�s�f�y� �i�t�.� � � � �S�i�n�c�e� �q�u�a�t�e�r�n�i�o�n�s� �a�r�e� �e�x�t�e�n�s�i�o�n�s� �o�f� �c�o�m�p�l�e�x� �n�u�m�b�e�r�s�,� �w�e� �c�a�n� �m�u�l�t�i�p�l�y� �t�h�e�m� �b�y� � �d�i�s�t�r�i�b�u�t�i�o�n�,� �b�u�t� �t�h�i�s� �r�e�q�u�i�r�e�s� �s�t�r�o�n�g�e�r� �d�e�f�i�n�i�t�i�o�n�s� �o�f� �i�,� �j�,� �a�n�d� �k� �a�n�d� �t�h�e�i�r� � �m�u�l�t�i�p�l�i�c�a�t�i�o�n�.��� �T�h�e�s�e� �r�e�l�a�t�i�o�n�s�h�i�p�s� �c�a�n� �b�e� �e�a�s�i�l�y� �r�e�m�e�m�b�e�r�e�d� �w�i�t�h� �t�h�e� � �r�i�g�h�t�-�h�a�n�d�-�r�u�l�e�.� � � � �!�[�Q�u�a�t�4�]�(�.�.�/�i�m�a�g�e�s�/�q�u�a�t�/�q�u�a�t�0�4�.�p�n�g�)� � � � �N�o�w� �w�e� �c�a�n� �m�u�l�t�i�p�l�y� �t�h�e� �q�u�a�t�e�r�n�i�o�n�s� �b�y� �d�i�s�t�r�i�b�u�t�i�o�n�.��� � �T�h�i�s� �c�a�n� �b�e� �s�i�m�p�l�i�f�i�e�d� �t�o� �t�h�e� �f�o�l�l�o�w�i�n�g� �e�q�u�a�t�i�o�n�,� �k�n�o�w�n� �a�s� �t�h�e� ��H�a�m�i�l�t�o�n� � �p�r�o�d�u�c�t��:� � � � �#�#� �(�a�<�s�u�b�>�1�<�/�s�u�b�>� �+� �b�<�s�u�b�>�1�<�/�s�u�b�>��i�� �+� �c�<�s�u�b�>�1�<�/�s�u�b�>��j�� �+� �d�<�s�u�b�>�1�<�/�s�u�b�>��k��)� �� �(�a�<�s�u�b�>�2�<�/�s�u�b�>� �+� �b�<�s�u�b�>�2�<�/�s�u�b�>��i��+� �c�<�s�u�b�>�2�<�/�s�u�b�>��j�� �+� �d�<�s�u�b�>�2�<�/�s�u�b�>��k��)� �=� � � � �!�[�Q�u�a�t�1�]�(�.�.�/�i�m�a�g�e�s�/�q�u�a�t�/�q�u�a�t�0�7�.�p�n�g�)� � � � �I�n� �o�r�d�e�r� �t�o� �f�o�r�m� �a� �3�D� �r�e�p�r�e�s�e�n�t�a�t�i�o�n� �o�f� �o�u�r� �4�D� �q�u�a�t�e�r�n�i�o�n�,� �w�e� �u�s�e� �a� ��s�t�e�r�e�o�g�r�a�p�h�i�c� �p�r�o�j�e�c�t�i�o�n��,� � �w�h�i�c�h� �d�r�a�w�s� �l�i�n�e�s� �t�h�r�o�u�g�h� �t�h�e� �p�o�i�n�t� �(�-�1�,� �0�,� �0�,� �0�)� �a�n�d� �e�v�e�r�y� �o�t�h�e�r� �o�n�e� �o�n� �t�h�e� � �h�y�p�e�r�s�p�h�e�r�e�.��� �W�h�e�r�e�v�e�r� �t�h�e�s�e� �l�i�n�e�s� �i�n�t�e�r�s�e�c�t� �t�h�e� �3�D� �s�p�a�c�e� �i�s� �t�h�e�i�r� �p�r�o�j�e�c�t�i�o�n� � �o�n�t�o� �i�t� �(�2�D� �p�r�o�j�e�c�t�i�o�n� �i�n�t�o� �a� �1�D� �s�p�a�c�e� �s�h�o�w�n� �b�e�l�o�w�)�:� � � � �Y�e�l�l�o�w� �l�i�n�e�s� �a�r�e� �d�r�a�w�n� �o�r�i�g�i�n�a�t�i�n�g� �a�t� �-�1� �+� �0��i�� �a�n�d� �i�n�t�e�r�s�e�c�t� �w�i�t�h� �e�v�e�r�y� �p�o�i�n�t� �o�n� �t�h�e� �u�n�i�t� � �c�i�r�c�l�e�.����� �T�h�e� �p�o�i�n�t� �a�t� �w�h�i�c�h� �t�h�e� �l�i�n�e� �i�n�t�e�r�s�e�c�t�s� �t�h�e� ��i��-�l�i�n�e� �i�s� �w�h�e�r�e� �t�h�e� � �p�o�i�n�t� �i�s� �p�r�o�j�e�c�t�e�d� �o�n�t�o� �t�h�e� �1�D� �l�i�n�e�.��� �H�e�r�e�,� �y�o�u� �c�a�n� �s�e�e� �t�h�e� �2�D� �p�o�i�n�t� �0�.�7�9� �+� � �0�.�6�1��i�� �o�n�t�o� �t�h�e� �p�o�i�n�t� �\~�0�.�4�.� � � � �A�l�l� �t�h�e�s�e� �e�l�e�m�e�n�t�s� �c�o�m�b�i�n�e�d� �a�l�l�o�w� �u�s� �t�o� �u�s�e� �q�u�a�t�e�r�n�i�o�n�s� �t�o� �d�e�f�i�n�e� �a� �r�o�b�o�t� s� �(�o�r� �a�n�y� �o�t�h�e�r� �3�D� �o�b�j�e�c�t� s�)� �o�r�i�e�n�t�a�t�i�o�n� �i�n� �3�D� �s�p�a�c�e�.��� �I�n�s�t�e�a�d� �o�f� �a�d�d�i�n�g� �r�o�t�a�t�i�o�n�s�,� �w�e� �u�s�e� �t�h�e� ��H�a�m�i�l�t�o�n� �p�r�o�d�u�c�t�� �t�o� �c�o�m�b�i�n�e� �q�u�a�t�e�r�n�i�o�n�s� �(�s�i�n�c�e� �w�e� �a�r�e� �w�o�r�k�i�n�g� �o�n�e� �d�i�m�e�n�s�i�o�n� �u�p�)�.� � �T�h�e� �d�i�m�e�n�s�i�o�n�a�l�i�t�y� �o�f� �t�h�e� �r�o�t�a�t�i�o�n� �i�s� �b�e�s�t� �v�i�s�u�a�l�i�z�e�d� �a�s� �a� �r�o�t�a�t�i�o�n� �Q� �a�r�o�u�n�d� �a� ��E�u�l�e�r� �a�x�i�s�� �(�a� �3�D� �u�n�i�t� �v�e�c�t�o�r�)�.��� �A� �q�u�a�t�e�r�n�i�o�n� ��q��,� �w�h�i�c�h� �d�e�s�c�r�i�b�e�s� �a� �r�o�t�a�t�i�o�n� �Q� �a�r�o�u�n�d� �t�h�e� �u�n�i�t� �v�e�c�t�o�r� ��u��,� � �i�s� �g�i�v�e�n� �a�s�:� � � � �!�[�q�u�a�t�6�]�(�.�.�/�i�m�a�g�e�s�/�q�u�a�t�/�q�u�a�t�0�6�.�p�n�g�)� � � � �#�#�#� �U�s�e�f�u�l� �L�i�n�k�s� � � � �� �[�e�a�t�e�r�.�n�e�t� �Q�u�a�t�e�r�n�i�o�n�s�]�(�h�t�t�p�s�:�/�/�e�a�t�e�r�.�n�e�t�/�q�u�a�t�e�r�n�i�o�n�s�)� � �� �[�W�i�k�i�p�e�d�i�a� �Q�u�a�t�e�r�n�i�o�n�s�]�(�h�t�t�p�s�:�/�/�e�n�.�w�i�k�i�p�e�d�i�a�.�o�r�g�/�w�i�k�i�/�Q�u�a�t�e�r�n�i�o�n�)� � �� �[�W�i�k�i�p�e�d�i�a� �Q�u�a�t�e�r�n�i�n�i�o�n�s� �a�n�d� �S�p�a�t�i�a�l� �R�o�t�a�t�i�o�n�s�]�(�h�t�t�p�s�:�/�/�e�n�.�w�i�k�i�p�e�d�i�a�.�o�r�g�/�w�i�k�i�/�Q�u�a�t�e�r�n�i�o�n�s�_�a�n�d�_�s�p�a�t�i�a�l�_�r�o�t�a�t�i�o�n�)� � �*� �[�W�i�k�i�p�e�d�i�a� �S�t�e�r�e�o�g�r�a�p�h�i�c� �P�r�o�j�e�c�t�i�o�n�s�]�(�h�t�t�p�s�:�/�/�e�n�.�w�i�k�i�p�e�d�i�a�.�o�r�g�/�w�i�k�i�/�S�t�e�r�e�o�g�r�a�p�h�i�c�_�p�r�o�j�e�c�t�i�o�n�)� � �